A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION

نویسندگان

  • D. A. GOLDSTON
  • S. M. GONEK
چکیده

Let πS(t) denote the argument of the Riemann zeta-function at the point 1/2 + it. Assuming the Riemann hypothesis, we sharpen the constant in the best currently known bounds for S(t) and for the change of S(t) in intervals. We then deduce estimates for the largest multiplicity of a zero of the zeta-function, and for the largest gap between the zeros.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of the Riemann Zeta-Function on the Critical Line

It was shown by Selberg [3] that the Riemann Zeta-function has at least cT log T zeros on the critical line up to height T, for some positive absolute constant c. Indeed Selberg’s method counts only zeros of odd order, and counts each such zero once only, regardless of its multiplicity. With this in mind we shall write γ̂i for the distinct ordinates of zeros of ζ(s) on the critical line of odd m...

متن کامل

Riemann ’ s and ζ ( s )

[This document is http://www.math.umn.edu/ ̃garrett/m/complex/notes 2014-15/09c Riemann and zeta.pdf] 1. Riemann’s explicit formula 2. Analytic continuation and functional equation of ζ(s) 3. Appendix: Perron identity [Riemann 1859] exhibited a precise relationship between primes and zeros of ζ(s). A similar idea applies to any zeta or L-function with analytic continuation, functional equation, ...

متن کامل

On the Function S ( T ) in the Theory of the Riemann Zeta - Function

The function S(T) is the error term in the formula for the number of zeros of the Riemann zeta-function above the real axis and up to height Tin the complex plane. We assume the Riemann hypothesis, and examine how well S(T) can be approximated by a Dirichlet polynomial in the Lz norm.

متن کامل

Final steps towards a proof of the Riemann hypothesis

A proof of the Riemann’s hypothesis (RH) about the non-trivial zeros of the Riemann zeta-function is presented. It is based on the construction of an infinite family of operators D in one dimension, and their respective eigenfunctions ψs(t), parameterized by continuous real indexes k and l. Orthogonality of the eigenfunctions is connected to the zeros of the Riemann zeta-function. Due to the fu...

متن کامل

Distribution of the zeros of the Riemann Zeta function

One of the most celebrated problem of mathematics is the Riemann hypothesis which states that all the non trivial zeros of the Zeta-function lie on the critical line <(s) = 1/2. Even if this famous problem is unsolved for so long, a lot of things are known about the zeros of ζ(s) and we expose here the most classical related results : all the non trivial zeros lie in the critical strip, the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007